POWER PRESERVED GLULAM® BEAMS AND COLUMNS

BUILD LONG LASTING STRUCTURES WITH POWER PRESERVED GLULAM®

STRONG, DURABLE, SUSTAINABLE

CANFOR.COM | 800.221.BEAM | ANTHONYFOREST.COM

Anthony Forest Products is part of the Canfor Group of Companies

©Anthony Forest Products Company, LLC

POWER PRESERVED GLULAM® BEAMS AND Columns **create stronger, longer Lasting structures**

Surfside Beach Community Center

POWER PRESERVED GLULAM® (PPG)

As North America's largest producer of Southern Yellow Pine glue-laminated beams (glulam), Anthony Forest Products Company, LLC (a Canfor Corporation company) engineered wood products operations offer a wide variety of glulam for industrial, commercial, and residential applications.

With two Glulam Manufacturing Operations in the U.S. South (El Dorado, Arkansas and Washington, Georgia).

Our glulam operations are 100% vertically integrated for supply of raw materials with all fiber sourced internally from Canfor's sawmills located throughout the Southeast United States. This provides our glulam operations with a consistent supply of high-grade, low moisture content material allowing us to produce quality products in an efficient, cost-effective manner.

We market our glulam under the Power Products® brand.

The Power Preserved Glulam®, our treated glulam offering, is a durable, long-term solution for most exterior non-marine use structural applications.

Power Preserved Glulam® offers fast, easy, one-piece installation that's more efficient than bolting or nailing multi-ply dimension or structural composite lumber members together.

Power Preserved Glulam® is offered with two preservative treatments options:

 Permethrin / IPBC is a colorless, solvent-based (low odor mineral spirits) preservative system containing Permethrin(insecticide) and IPBC (fungicide) which are active components in EPA-registered pesticides. Permethrin / IPBC treated wood is effective against mildew, mold, decay organisms and various termites, including the Formosan Termite in above ground (UC3) applications.

 Copper Naphthenate preservative has a green color. Copper Naphthenate treated wood products are available in a range of retentions for above ground use (UC3), ground contact (UC4) and severe exposure (UC4). It is effective against mildew, mold, decay organisms and various termites, including the Formosan Termite.

Both preservatives are applied to Power Preserved Glulam® through vacuum pressure impregnation per American Wood Protection Associations (AWPA) Standards. With a 25-year warranty from the treater, high strength-to-weight ratio, and long span capabilities, Power Preserved Glulam® is an excellent choice for decks, boardwalks, pergolas, covered porches and demanding environments such as bridges, highway sound barriers, railroad cross ties, and floating docks.

FASTENERS

Fasteners, including nuts and washers, in contact with Copper Naphthenate and Permethrin / IPBC preservative-treated wood must be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper.

Corrosion resistant fasteners are required with Copper Naphthenate and Permethrin / IPBC treated wood if a connection is made to water borne copper treated wood or if members are in severe deterioration zones.

Stainless Steel fasteners may be required under wet conditions. Local building codes will always supersede the above restrictions.

QUALITY ASSURANCE AND CODE COMPLIANCE

Canfor's glulam operations are certified by APA – The Engineered Wood Association for use in building construction. Products bearing the APA trademark stamp signify conformance with ANSI A190.1, American National Standard for Structural Glued Laminated Timber, and have undergone rigorous quality control testing to ensure code compliance.

Power Preserved Glulam® products are manufactured in accordance with ANSI A190.1, which is the code recognized standard for glued laminated timber and is accepted nationwide under the ICC-ESR 1940 and APA Product Report L282. The adhesive used in our glulam conforms to wet-use complying with ASTM D2559.

CONDITIONS OF USE (DRY OR WET)

Power Preserved Glulam® products are recommended for above ground use where the equilibrium moisture content (EMC) of the laminated beam will not exceed 16% thus allowing dry use design values (over 16% considered wet use). The definitions of dry and wet service vary from the many publications available on the subject. The USDA Forest Products Lab "Wood Handbook" shows how the equilibrium moisture will change with relative humidity and temperature. Although there will be intermittent wetting of the exposed beams, drying normally occurs, and therefore, the beam

Outdoor Sports Arena

does not reach a "wet use" condition.

RESTRICTIVE USES

Power Preserved Glulam® Beams and Columns should not be used in interior applications.

Power Preserved Glulam® Beams and Columns shall not be used in any applications in direct contact with bituminous materials such as deck protective wrap, asphalt, tar or felt paper. Power Preserved Glulam® Beams and Columns shall not be used in any application where it will be submerged in water or in marine applications.

Freshly treated Power Preserved Glulam® (treated with Copper Naphthenate) will exhibit a bright green to olive color and have an oily odor. The color is from copper naphthenate, and the odor is from both preservative and carrier solvent. Under certain conditions Copper Naphthenate treated wood may exude surface deposits which will be green in color. This exudation is more likely to happen when higher retention, freshly treated material is placed in bright, hot sunlight and in a vertical position, as in a column. Some exudates may appear on the surface or collect at the base of the column or pool on the surface of the supporting structure. This will cease after the beam or column has dried. Exudate may be removed from the wood surface by wiping the affected area with a heavy cotton cloth saturated with mineral spirits. Stained surfaces may be cleaned by using a biodegradable cleaning solvent such as Dawn Power Dissolver, with water and either a pressure washer or stiff scrub brush. This will in no way affect the preservative properties or efficacy of the preservative treated wood and does not negate the warranty.

Sawn ends, field trimming, and fabrications holes and or notching should be resealed with a 25% Copper Naphthenate solution or other commonly used wood preservative available at local home centers under various trade names.

After treatment and prior to installation or use, store treated material in well-

TABLE 1: SYP PRESERVATIVE RETENTION COMPARISON TABLE (PCF)

AWPA		PRESERVATIVE										
Use Cat	egories	ACQ	ACD	IPBC/PER	CuNAP	MCQ	MCA					
ABOVE GROUND	UC3B	0.25	0.17	0.055	0.04	0.15	0.07					
GROUND	UC4A	0.40	0.28	N/A	0.075	0.34	0.07					
CONTACT	UC4B	0.60	0.28	N/A	0.075	0.60	0.16					
	UC4C	0.60	0.28	N/A	0.075	0.60	0.24					

ANTHONY FOREST PRODUCTS IS PART OF THE CANFOR GROUP OF COMPANIES

RESTRICTIVE USES (CONTINUED)

ventilated area or "open air" environment and stack so air circulates around each piece until dry and odor free. Do not allow vapors to collect in closed spaces (especially working or living areas) during the drving process. Avoid open flames and do not smoke around treated wood during the drying process. Avoid exposure to vapors from freshly treated wood.

For additional restrictions and preservative information, please refer to the Consumer Information Sheets and Safety Data Sheets on our website anthonyforest.com.

FINISHING

Copper Naphthenate above ground treated wood product may be finished or stained after thorough air drying has occurred. A stain blocking primer is required for all applications. Ground contact retention is not recommended for painting, staining or finishing.

Permethrin / IPBC treated wood may be painted, stained or sealed after air drying has evaporated the solvent. Blistering, peeling or solvent bleeding may occur if not adequately dry. It is the user's responsibility to test the desired finishing system on sample material and exposure to actual use conditions to determine if the desired effect can be obtained. With exposure to the elements, unprotected treated wood will turn to a natural gray color.

STORAGE AND HANDLING

Prior to installation, Power Preserved Glulam® should be protected from direct exposure to weather conditions (i.e., sun, rain, snow) by storing undercover, in elevated racks, or by leaving the paper wrap intact on the unit until installation. Store on stickers or in racks away from direct contact with the ground and in orderly stacks at heights that can be handled safely. Use care in moving and storing with forklifts to prevent damage. To minimize checking, maintain size tolerances, and appearance, keep Power Preserved Glulam® covered with paper wrap and seal ends after trimming or cutting. Sawn ends, field trimming, and fabrications holes and or notching should be resealed with a 25% Copper Naphthenate solution. Do not install or repair damaged products.

TECHNICAL SUPPORT

Our Power Preserved Glulam® Beams and Columns are available in iStruct® branded Power Sizer® software suite. To download the latest version of iStruct®, go to our website and download a copy at no charge. https://www.anthonyforest.com/sizingsoftware.shtml

Technical guestions regarding our Power Preserved Glulam® can be answered with a call to 800-221-BEAM.

TABLE 2: PPG BEAMS VS 2X12'S LOAD TABLE COMPARISON										
Product	Column Spacing 10' or 12' (LDF=1.00)	Total Load PLF								
2 7/16" x 11 1/4" Power Pr	eserved Glulam®	10	822							
3 pcs. 2x12 #2 SYP .25 MC	1	10	524							
2 7/16" x 11 1/4" Power Pr	eserved Glulam®	12	554							
4 pcs. 2x12 #2 SYP .25 MC	1	12	483							

TABLE 3: POWER PRESERVED GLULAM® DESIGN VALUE COMPARISON (PSI)											
Product	F _b (Flexural Stress)	MOE (Modulus of Elasticity)	F _v (Horizontal Shear)	F _{c 1} (Compression Perpendicular to Grain)							
Power Preserved Glulam®1	2400	1.8 x 10 ⁶	300	740							
Treated SCL ²	2117	1.7 x 10 ⁶	241	533							
#2 Treated SYP 4x12 ³	750	1.3 x 10 ⁶	170	379							
Wet-Use Factor ⁴	0.8	0.833	0.875	0.53							

¹"Dry-Use" means the treated beam does not exceed 16% maximum moisture content. ²SCL or structural composite lumber is treated with water borne preservatives for service level 1 or dry-use.

For service level 2 or wet-use, additional reductions are required.

³SYP 4x12 is treated with water borne preservatives for wet-use. No wet-use reduction applied. ⁴The tabulated values are for moisture content of less than 16%. For wet-use, the design values must be multiplied by the wet-use factor.

TABLE 4: POWER PRESERVED GLULAM [®] SIZES AND DESIGN PROPERTIES 1.2EWS 24F-V5M1/SP • Dry-Use • F _v =2,400 psi • F _v =300psi • E=1.8 x 10 ⁴ psi • F _c =740 psi											
			Moment of Inertia (in⁴)	Maximum Resisti	ve Moment (ftlbf)	Maximum Resistive Shear (lbf)					
Width (in.)	Depth (in.)	Weight (lbs/ft.) ¹		100%	115%	100%	115%				
	9 1/4	10.8	227	9,804	11,275	6,359	7,313				
	9 1/2	11.1	246	10,341	11,892	6,531	7,511				
2 7/16" ³	11 1/4	13.1	408	14,502	16,677	7,734	8,895				
3 1/2"	11 7/8	13.9	480	16,158	18,582	8,164	9,389				
3 1/2"	14	16.3	786	22,458	25,827	9,625	11,069				
	16	18.7	1173	29,333	33,733	11,000	12,650				
	18	21.0	1671	37,125	42,694	12,375	14,231				
	9 1/4	16.2	346	14,973	17,219	9,713	11,169				
	9 1/2	16.6	375	15,794	18,163	9,975	11,471				
	11 1/4	19.7	623	22,148	25,471	11,813	13,584				
5 1/4"	11 7/8	20.8	733	24,678	28,379	12,469	14,339				
	14	24.5	1201	34,300	39,445	14,700	16,905				
	16	28.0	1792	44,800	51,520	16,800	19,320				
	18	31.5	2552	56,700	65,205	18,900	21,735				

¹Beam weight is assumed to be 48 pcf. ²Maximum resistive moment shall be adjusted by the volume factor based in NDS-2012, or see footnote #2 from Table 3. ³2 7/16" widths only available in 9 1/4", 11 1/4" and 14" depths. To determine 2 7/16" design properties, multiply .464 times the 5 1/4" weight, moment of inertia, moment and shear. See Anthony Forest website at www.anthonyforest.com to download complete 2 7/16" design properties table and load tables.

TREATED GLULAM ALLOWABLE FLOOR LOADS (PLF)

EWS 24F-V5M1/SP • Dry-Use • $F_b=2,400$ psi • $F_v=300$ psi • $E=1.8 \times 10^6$ psi • F_c _=740 psi • (LDF=1.00)

							Span (fee	Span (feet)						
Width (in)	Depth (in)	Load Condition	6	8	10	12	14	16	18	20	22	24	26	
	9 1/4	Total Load Live Load Min. End/Int.Bearing (in.)	2052 2.4/6.0	1226 1181 1.9/4.8	756 605 1.5/3.8	437 350 1.5/3.8	275 220 1.5/3.8	185 148 1.5/3.8	130 104 1.5/3.8	94 76 1.5/3.8	71 57 1.5/3.8	55 44 1.5/3.8	43 34 1.5/3.8	
	9 1/2	Total Load Live Load Min. End/Int.Bearing (in.)	2108 2.5/6.3	1293 1279 2.0/5.0	827 655 1.6/4.0	474 379 1.5/3.8	298 239 1.5/3.8	200 160 1.5/3.8	140 112 1.5/3.8	102 82 1.5/3.8	77 62 1.5/3.8	59 47 1.5/3.8	47 37 1.5/3.8	
2 7/16" (See Note 1)	11 1/4	Total Load Live Load Min. End/Int.Bearing (in.)	2749 3.2/8.0	1813 2.9/7.3	1160 1088 2.3/5.8	787 629 1.9/4.8	495 396 1.5/3.8	332 266 1.5/3.8	233 186 1.5/3.8	170 136 1.5/3.8	128 102 1.5/3.8	98 79 1.5/3.8	77 62 1.5/3.8	
	11 7/8	Total Load Live Load Min. End/Int.Bearing (in.)	2901 3.4/8.5	1918 3.0/7.5	1293 1279 2.5/6.3	898 740 2.1/5.3	583 466 1.6/4.0	390 312 1.5/3.8	274 219 1.5/3.8	200 160 1.5/3.8	150 120 1.5/3.8	116 93 1.5/3.8	91 73 1.5/3.8	
3 1/2"	14	Total Load Live Load Min. End/Int.Bearing (in.)	3743 4.4/11.0	2401 3.8/9.5	1782 1784 3.5/8.8	1248 1213 2.9/7.3	917 764 2.5/6.3	702 512 2.2/5.5	449 359 1.6/4.0	328 262 1.5/3.8	246 197 1.5/3.8	190 152 1.5/3.8	149 119 1.5/3.8	
	16	Total Load Live Load Min. End/Int.Bearing (in.)	4719 5.6/14.0	2926 4.6/11.5	2101 4.1/10.3	1615 3.8/9.5	1182 1140 3.3/8.3	901 764 2.8/7.0	671 537 2.4/6.0	489 391 1.9/4.8	367 294 1.6/4.0	283 226 1.5/3.8	223 178 1.5/3.8	
	18	Total Load Live Load Min. End/Int.Bearing (in.)	5917 7.0/17.5	3522 5.5/13.8	2485 4.9/2.3	2046 4.8/12.0	1499 4.1/10.3	1143 1088 3.6/9.0	899 764 3.2/8.0	725 557 2.8/7.0	523 418 2.3/5.8	403 322 1.9/4.8	317 253 1.6/4.0	
	9 1/4	Total Load Live Load Min. End/Int.Bearing (in.)	3114 2.4/6.0	1861 1803 1.9/4.8	1154 923 1.5/3.8	664 534 1.5/3.8	419 337 1.5/3.8	280 225 1.5/3.8	197 158 1.5/3.8	144 115 1.5/3.8	108 87 1.5/3.8	83 67 1.5/3.8	66 53 1.5/3.8	
	9 1/2	Total Load Live Load Min. End/Int.Bearing (in.)	3199 2.5/6.3	1948 2.0/5.0	1264 1000 1.6/4.0	719 579 1.5/3.8	453 365 1.5/3.8	303 244 1.5/3.8	214 172 1.5/3.8	156 125 1.5/3.8	117 94 1.5/3.8	90 72 1.5/3.8	71 57 1.5/3.8	
	11 1/4	Total Load Live Load Min. End/Int.Bearing (in.)	4172 3.2/8.0	2752 2.9/7.3	1772 1661 2.3/5.8	1195 961 1.9/4.8	753 605 1.5/3.8	504 406 1.5/3.8	354 285 1.5/3.8	260 208 1.5/3.8	195 156 1.5/3.8	150 120 1.5/3.8	118 95 1.5/3.8	
5 1/4"	11 7/8	Total Load Live Load Min. End/Int.Bearing (in.)	4403 3.4/8.5	2910 3.0/7.5	1944 2.5/6.3	1344 1131 2.1/5.3	885 712 1.6/4.0	593 477 1.5/3.8	419 335 1.5/3.8	305 244 1.5/3.8	229 183 1.5/3.8	177 141 1.5/3.8	139 111 1.5/3.8	
	14	Total Load Live Load Min. End/Int.Bearing (in.)	5679 4.4/11.0	3644 3.8/9.5	2707 3.5/8.8	1874 1853 2.9/7.3	1371 1167 2.5/6.3	1044 782 2.2/5.5	682 549 1.6/4.0	497 400 1.5/3.8	373 301 1.5/3.8	289 232 1.5/3.8	228 182 1.5/3.8	
	16	Total Load Live Load Min. End/Int.Bearing (in.)	7161 5.6/14.0	4440 4.6/11.5	3188 4.1/10.3	2451 3.8/9.5	1794 1741 3.3/8.3	1400 1167 2.8/7.0	1018 819 2.4/6.0	742 597 1.9/4.8	558 449 1.6/4.0	460 346 1.5/3.8	340 272 1.5/3.8	
	18	Total Load Live Load Min. End/Int.Bearing (in.)	8979 7.0/17.5	5343 5.5/13.8	3770 4.9/12.3	3106 4.8/12.0	2274 4.1/10.3	1734 1661 3.6/9.0	1365 1167 3.2/8.0	1128 851 2.9/7.3	794 639 2.3/5.8	615 492 1.9/4.8	484 387 1.6/4.0	

- 2 7/16" Load Tables widths only available in 9 1/4", 11 1/4" and 14" depths. To determine 2 7/16" load capacity, multiply .464 times the 5 1/4" loads. The bearing stays the same. See Anthony Forest website at www.anthonyforest. com to download complete 2 7/16" load tables.
- Values shown are the maximum uniform loads (beam weight included) in pounds per lineal foot (PLF) that can be applied to the beam.
- 3. These tables are for preliminary design when considering load and other conditions. The final design should include complete design analysis.
- Bearing lengths shown in third row of each cell are for maximum PLF loads for the two end bearings and for middle or intermediate bearings when beam is continuous. A shorter bearing may be used if proper analysis is done.
- Live load is based on the deflection criterion of L/360 and includes the beam weight (48 pcf).
- Total load is based on the deflection criterion of L/240 and includes creep deflection with a LL/DL ratio of 4 or higher.
- For deflection limits of L/240 and L/480, multiply the live load figures by 1.5 and 0.75 respectively.

- The beam is assumed to be loaded on the top edge and with full lateral support at bearing points.
- 9. Selected beam must satisfy both live and total load.
- **10.** Where no live load shows, live load is the same as total load.

TREATED GLULAM ALLOWABLE ROOF SNOW LOADS (PLF)

EWS 24F-V5M1/SP • Dry-Use • F_b=2,400 psi • F_v=300 psi • E=1.8 x 10⁶ psi • F_c _1=740 psi • (LDF=1.15)

			Span (feet)										
Width (in)	Depth (in)	Load Condition	6	8	10	12	14	16	18	20	22	24	26
	9 1/4	Total Load	2364	1400	892	574	357	236	163	124	85	63	47
		Live Load Min, End/Int Rearing (in)	 2 8/7 0	 2 2/5 5	 1 8// 5	525	330	221	155	113			
		Fini. Linu/inc.Dearing (in.)	2.0/7.0	2.2/3.3	1.0/4.0	1.5/5.0	1.5/5.0	1.5/5.0	1.3/3.0	1.3/3.0	1.3/3.0	1.3/3.0	1.3/3.0
	9 1/2	Total Load	2428	1478	943	622	388	256	178	127	92	69	52
		Min. End/Int.Bearing (in.)	2.9/7.3	2.3/5.8	1.9/4.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8
2 7/16"	11 1/4	Total Load	3165	2076	1324	916	651	432	300	216	159	121	91
(See Note 1)		Live Load					595 1.0// F	398	280	204	153	118	
		Min. End/int.Bearing (in.)	3.//9.3	3.3/8.3	2.0/0.5	2.2/5.5	1.8/4.5	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8
	11 7/8	lotal Load Live Load	3340	2313	1476	1021	747 699	509 468	354 329	255 240	189 180	151 139	110
		Min. End/Int.Bearing (in.)	3.9/9.8	3.6/9.0	2.9/7.3	2.4/6.0	2.1/5.3	1.6/4.0	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	2.0/5.0
3 1/2"	14	Total Load	4309	2769	2054	1422	1041	794	586	474	315	239	194
		Live Load						768	539	393	295	227	179
		Min. End/Int.Bearing (in.)	5.1/12.8	4.4/11.0	4.0/10.0	3.4/8.5	2.9/7.3	2.5/6.3	2.1/5.3	1.7/7.3	1.5/3.8	1.5/3.8	1.5/3.8
	16	Total Load	5432	3372	2425	1860	1362	1039	818	637	474	362	281
		Min. End/Int.Bearing (in.)	6.4/16.0	5.3/13.3	4.8/12.0	4.4/11.0	3.7/9.3	3.3/8.3	2.9/7.3	2.5/6.3	2.1/5.3	340 1.7/7.3	1.5/3.8
	10	Tetalland	(010	(057	2011	005/	170/	1017	1007	0.07	(00	F 00	(05
	10	Live Load	0810	4007	2000	2300	1720			837	628	483	380
		Min. End/Int.Bearing (in.)	8.0/20.0	6.4/16.0	5.6/14.0	5.6/14.0	4.71/1.8	4.1/10.3	3.7/9.3	3.3/8.3	3.0/7.5	2.5/6.3	2.1/5.3
	9 1/4	Total Load	3587	2125	1355	871	543	359	247	177	130	96	73
		Live Load Min End/Int Rearing (in)	 2 8	2.2	 1 8/4 5	802 1 5/3 8	505 1 5/3 8	338 1 5/3 8	237	173	 1 5/3 8	 1 5/3 8	 1 5/3 8
	0 1/2	Total Load	368/	22/2	1/30	090	404	405	270	102	1/2	104	20
	J 1/2	Live Load				868	547	366	257	188	142		
		Min. End/Int.Bearing (in.)	2.9/7.3	2.3/5.8	1.9/4.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8
	11 1/4	Total Load	4803	3166	2026	1407	1003	676	475	346	260	200	158
		Live Load Min, End/Int,Bearing (in,)	3.7/9.3	3.3/8.3	2.6/6.5	 2.2/5.5	908 1.8/4.5	608 1.5/3.8	427	311 1.5/3.8	234	1.5/3.8	142
5 1/4"	11 7/8	Total Load	5069	3509	2239	15/9	1134	758	532	391	275	226	178
0 1/4	11 //0	Live Load					1068	715	502	366		212	167
	_	Min. End/Int.Bearing (in.)	3.9/9.8	3.6/9.0	2.9/7.3	2.4/6.0	2.1/5.3	1.6/4.0	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.8	1.5/5.0
	14	Total Load	6539	4201	3116	2158	1580	1205	910	663	501	386	304
		Min. End/Int.Bearing (in.)	5.1/12.8	4.4/11.0	4.0/10.0	3.4/8.5	2.9/7.3	2.5/6.3	2.1/5.3	1.7/7.3	1.4/3.5	347 1.5/3.8	1.5/3.8
	16	Total Load	8241	5115	3680	2821	2067	1577	1241	989	744	576	453
		Live Load							1229	896	673	519	408
		Min. End/Int.Bearing (in.)	6.4/16.0	5.3/13.3	4.8/12.0	4.4/11.0	3.7/9.3	3.3/8.3	2.9/7.3	2.6	2.1/5.3	1.8/4.5	1.5/3.8
	18	Total Load	10331	6155	4350	3575	2619	1999	1574	1270	1044	816	645
		Min. End/Int.Bearing (in.)	8.0/20.0	6.4/16.0	5.6/14.0	5.6/14.0	4.71/1.8	4.1/10.3	3.7/9.3	3.3/8.3	3.0/7.5	2.5/6.3	2.2/5.5

- 2 7/16" Load Tables widths only available in 9 1/4", 11 1/4" and 14" depths. To determine 2 7/16" load capacity, multiply .464 times the 5 1/4" loads. The bearing stays the same.
- Values shown are the maximum uniform loads (beam weight included) in pounds per lineal foot (PLF) that can be applied to the beam.
- These tables are for preliminary design when considering load and other conditions. The final design should include complete design analysis.
- 4. Bearing lengths shown in third row of each cell

are for maximum PLF loads for the two end bearings and for middle or intermediate bearings when beam is continuous. A shorter bearing may be used if proper analysis is done.

- Live load is based on the deflection criterion of span/240 and includes the beam weight (48 pcf)
- Total load is based on the deflection criterion of span/180 and includes creep deflection with a LL/DL ratio of 2 or higher.
- For live deflection limits of L/180 and L/360, multiply the live load values by 1.33 and 0.67

respectively. The resulting live load shall not exceed the total load shown.

- The beam is assumed to be loaded on the top edge and with full lateral support at bearing points.
- 9. Selected beam must satisfy both live and total load.
- 10. Where no live load shows, live load is the same as total load.

ANTHONY FOREST PRODUCTS IS PART OF THE CANFOR GROUP OF COMPANIES

POWER PRESERVED GLULAM® COLUMN

POWER PRESERVED GLULAM[®] COLUMN

Power Preserved Glulam® Column is our treated glulam column offering. Power Preserved Glulam® Columns can be treated to above ground or ground contact retentions. When treated to ground contact retentions (.075 pcf), Power Preserved Glulam® Columns meet AWPA use categories 4A, 4B, and 4C.

Suggested Uses: (Exterior Only)

- Deck support columns and board walks
- Residential and commercial exposed structural columns
- Raised coastal construction supports replacing piling
- Industrial and farming applications
- Pedestrian bridges and park shelters
- Pergolas

POWER PRESERVED GLULAM® COLUMN DESIGN VALUES

For Normal Duration of Load (LDF = 1.0)

Layup Combination	Species	Grade	Modulus of Elasticity		Compression P	arallel to Grain	Bending X-X Axis	Bending Y-Y Axis	
					4 or More Lams	2 or 3 Lams	2 lams to 15" Depth	4 or More Lams	3 Lams
			E _{X app} E _{Y app}	E _{X true} , E _{Y true}	F _{cu}	F _{cu}	F _{BXX}	F _{в ү-ү}	F _{B Y-Y}
Combination #50	Southern Pine	N1D14	1.9x10 ⁶ psi	2.0x10 ^₀ psi	2300 psi	1700 psi	2100 psi	2300 psi	2100 psi
Wet-Use Factor			0.8	333	0.	73	0.8	0.	8

Values Listed are for moisture content of less than 16% (Dry-Use). Apply wet-use adjustment factors for columns in direct contact with the ground. Use of column bases or standoffs may allow for dry-use.

See APA Product Report PR-L282 Power Preserved Glulam Beams and Columns Table 2 for complete list of Design Values.

Power Preserved Glulam[®] Pier and Beam Application

Power Preserved Glulam[®] Beach House Application

POWER PRESERVED GLULAM $^{\odot}$ beams and columns design, installation, and connection notes

- Allowable axial loading for all Power Preserved Column® sizes can be found on our website: https://www.anthonyforest.com/ewp/power-column.shtml
- Power Preserved Glulam® column load tables are for preliminary design use only. Final design should include a complete engineering analysis, including bearing capacity of the foundation supporting the column.
- Power Preserved Glulam[®] columns should be placed on column bases or embedded in concrete.
- Power Preserved Glulam[®] Beams and Columns should not be used in direct contact with water.
- Corrosion resistant connections are required and must meet all local building codes
- Power Preserved Glulam® Beams and Columns treated to ground contact retention (.075 pcf) should not be painted or stained.
- Power Preserved Glulam® Beams and Columns should not come in direct contact with bituminous materials such as deck protective wrap, asphalt or tar/felt paper.
- Two-ply connection details for 2 7/16" and 3 1/2" Power Preserved Glulam® can be found on our website:

https://www.anthonyforest.com/ewp/glulam-tech-data.shtml

ANTHONY FOREST PRODUCTS IS PART OF THE CANFOR GROUP OF COMPANIES

Power Preserved Glulam® Deck Application

Power Preserved Glulam® Pergola

Power Preserved Glulam® Bridge Application

Power Preserved Glulam® Deck Application

ANTHONY FOREST PRODUCTS IS PART OF THE CANFOR GROUP OF COMPANIES

BUILD LONG LASTING STRUCTURES WITH POWER PRESERVED GLULAM®

800-221-BEAM | anthonyforest.com | canfor.com ©Anthony Forest Products Company, LLC - March 2025

DISTRIBUTED BY:

Canfor Corporation Website

Anthony Forest Products Website