

Joint Evaluation Report

ESR-1940

Reissued January 2024

Subject to renewal January 2026

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, and APA – The Engineered Wood Association, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2024 ICC Evaluation Service, LLC and APA – The Engineered Wood Association. All rights reserved.

DIVISION: 06 00 00— WOOD, PLASTICS AND COMPOSITES Section: 06 02 00— Design Information	REPORT HOLDER: APA—THE ENGINEERED WOOD ASSOCIATION ADDITIONAL LISTEES: ANTHONY FOREST PRODUCTS CO. ROSBORO, LLC WFP ENGINEERED PRODUCTS, LLC	EVALUATION SUBJECT: GLUED-LAMINATED TIMBER COMBINATIONS AND THE GAP COMPUTER PROGRAM	
---	---	---	--

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2021, 2018, 2015 and 2012 International Building Code® (IBC)
- 2021, 2018, 2015 and 2012 International Residential Code® (IRC)

Property evaluated:

Structural

2.0 USES

The GAP computer program is utilized to determine design stresses for the specific layups of glued-laminated timbers listed in <u>Tables 1</u> and <u>2</u> of this report.

Glued-laminated timbers manufactured to the glued-laminated timber combinations or single grade layups that have been developed using the GAP program, and that are produced at the facilities listed in <u>Table 3</u>, are recognized as being in compliance with the design parameters indicated in Section 3.0 of this report.

3.0 DESCRIPTION

The GAP computer program is based on the principles of ASTM D3737. It is an alternative method for determining associated allowable design stresses for a given layup combination of glued-laminated timber. The GAP computer program complies with the IBC and the IRC for allowable stress design. The design assumptions discussed in Sections 3.1 through 3.4 of this report are basic parameters utilized with the development of the allowable design stresses for the combinations listed in <u>Table 1</u> or single grade layups listed in <u>Table 2</u>. See Section 5.4 for requirements applicable to these parameters.

3.1 Adhesive:

Face and end-joint bonding adhesives comply with ASTM D2559 for exterior or wet use.

3.2 End Joints:

End joints comply with ANSI A190.1 and ASTM D3737.

3.3 Lumber:

Lumber having a nominal thickness of 2 inches or less is glued-laminated into rectangular cross sections complying with industry standards for depth, width, and appearance. Lumber that is E-rated or visually graded complies with rules of applicable approved lumber grading agencies and the procedures set forth in the manufacturer's quality control documentation. Quality control for E-rating and beam fabrication is conducted under the supervision of an approved third-party inspection agency. Grade specifications are included in rules of the applicable approved lumber grading agencies and follow industry classifications and nomenclature as provided in the applicable code.

3.4 Layup:

Beams are fabricated in accordance with ANSI A190.1 using the grade combinations noted in <u>Table 1</u> or single grade layups noted in <u>Table 2</u> of this report. Combinations are in accordance with ASTM D3737 requirements. Resawn purlin beams, manufactured by ripping nominally 6-inch beams vertically through their depth into two members of equal width, are permitted to be produced from Canadian spruce-pine (CSP) and spruce-pine-fir (SPF) combinations in this width without any variation in basic grade description or layup procedures.

4.0 DESIGN

The design requirements of structural glued-laminated timber must comply with Section 2306 or 2307 of the IBC, or Sections R502.2 and R802.2 of the IRC, as applicable. Modifications of values for duration of load must comply with the IBC or the IRC, as applicable.

5.0 CONDITIONS OF USE:

The specific layups for the glued-laminated timbers described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** The application of the GAP computer program is limited to the layup combinations shown in <u>Tables 1</u> or <u>2</u>. Design stresses for normal conditions of loading must not exceed those set forth in <u>Tables 1</u> or <u>2</u>.
- **5.2** Design stresses for combinations noted in <u>Table 1</u> are for members with four or more laminations stressed primarily in bending due to loads applied perpendicular to the wide faces of the laminations. Design values are included, however, for axial stresses and stresses from bending due to loads applied parallel to the wide faces of the laminations.
- **5.3** Design stresses for combinations noted in <u>Table 2</u> are for members with two or more laminations stressed primarily axially or in bending due to loads applied parallel to the wide faces of the laminations. Design values are included, however, for stresses from bending due to loads applied perpendicular to the wide faces of the laminations.
- 5.4 The effects of checking of the members are outside the scope of this report.
- **5.5** Glued-laminated timber manufactured to the glued-laminated timber combinations or single grade layups that have been developed using the GAP program, listed in <u>Tables 1</u> and <u>2</u>, and that are produced at the facilities listed in <u>Table 3</u>, are recognized as being in compliance with the design parameters indicated in Section 3.0 of this report.

Evaluation of glue-laminated timber manufactured in accordance with this report but produced by manufacturers not listed in <u>Table 3</u> must be recognized in a current ICC-ES report as being in compliance with the design parameters indicated in Section 3.0 of this report.

5.6 The quality program for monitoring the use of the GAP computer program must be in accordance with "Quality Control Requirements for the GAP Computer Program," dated July 26, 2006.

6.0 EVIDENCE SUBMITTED

- **6.1** Program Guide for the GAP Computer Program.
- 6.2 Data in accordance with ASTM D3737.
- **6.3** Quality system documentation.

7.0 IDENTIFICATION

- **7.1** Each glued-laminated beam manufactured using layup combinations determined in accordance with this report and produced at the facilities listed in <u>Table 3</u> must be identified with the ICC-ES evaluation report number (ESR-1940).
- 7.2 The report holder's contact information is the following:

APA—THE ENGINEERED WOOD ASSOCIATION 7011 SOUTH 19TH STREET TACOMA, WASHINGTON 98466 (253) 565-6600 www.apawood.org

7.3 The additional listees' contact information is the following:

ANTHONY FOREST PRODUCTS CO. 295 COOPER DRIVE EL DORADO, ARKANSAS 71730

ROSBORO, LLC POST OFFICE BOX 20 SPRINGFIELD, OREGON 97477

WFP ENGINEERED PRODUCTS, LLC POST OFFICE BOX 11122 800-1055 WEST GEORGIA STREET VANCOUVER, BRITISH COLUMBIA V6E 3P3 CANADA ICC-ES[®] Most Widely Accepted and Trusted

TABLE 1 – REFERENCE DESIGN VALUES FOR STRUCTURAL GLUED LAMINATED SOFTWOOD TIMBER COMBINATIONS^(A)

(MEMBERS STRESSED PRIMARILY IN BENDING) (TABULATED DESIGN VALUES ARE FOR NORMAL LOAD DURATION AND DRY SERVICE CONDITIONS.)

Combinities Extrame Terminity Compression Provide Bearing*** Description (manufaction) Stream (manufaction) Compression Provide Bearing*** Stream (manufaction)		(Bending About X-X Axis (Loaded Perpendicular to Wide Faces of Laminations)										ling Abou		1	y Loaded	Fasteners			
Pythel Out-Core Protect Lenson Protect Le				Extreme Fiber Compres in Bending ^(c) Perpendito for Gra		Compression Perpendicular											Tension	Compression	for	r
L (pa) (pa) (pb) (p			Stressed in tension	Stressed in Tension (Negative	Face	Face		Modi	ulus of Elast	icity ^(f)				Мо	dulus of Elast	icity ^(f)		Parallel to		
2016/ES1P1 ESES 2000 2000 500 960 200 1.6 1.4 0.6 100 310 1.6 0.4 0.4 2016/ES1P1 ESES 2000 1300 440 425 116 1.5 1.4 0.74 485 1100 0.44 <th></th> <th></th> <th></th> <th></th> <th></th> <th>F_{c1x} (psi)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>F_{vy} ^(d,e) (psi)</th> <th>E_{y true} (10⁶ psi)</th> <th>E_{y app} (10⁶ psi)</th> <th>E_{y min} (10⁶ psi)</th> <th></th> <th>Fc (psi)</th> <th>G</th> <th></th>						F _{c1x} (psi)						-	F _{vy} ^(d,e) (psi)	E _{y true} (10 ⁶ psi)	E _{y app} (10 ⁶ psi)	E _{y min} (10 ⁶ psi)		Fc (psi)	G	
Self-ESPII SPRSPI Dec. 2000 2300 425 425 15 0.79 1000 1.5 1.4 0.74 425 1100 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.44 <t< td=""><td>16F-V3</td><td>DF/DF</td><td>1600</td><td>1250</td><td>560</td><td>560</td><td>265</td><td>1.6</td><td>1.5</td><td>0.79</td><td>1450</td><td>560</td><td>230</td><td>1.6</td><td>1.5</td><td>0.79</td><td>975</td><td>1500</td><td>0.50</td><td>0.50</td></t<>	16F-V3	DF/DF	1600	1250	560	560	265	1.6	1.5	0.79	1450	560	230	1.6	1.5	0.79	975	1500	0.50	0.50
22F-WPC1 POCPPC 2200 180 560 265 1.9 1.8 0.56 1500 375 230 1.7 1.6 0.79 1150 1150 0.045 0.45 22F-WPC2 CSPCSP 2400 2400 560 560 215 1.7 1.6 0.85 1150 2000 0.42 0.4	20F-E/SPF1 ⁽ⁱ⁾ 20F-E8 20F-E8M1 20F-V4 20F-V8 20F-V12	SPF/SPF ES/ES ES/ES DF/DF DF/DF AC/AC	2000 2000 2000 2000 2000 2000	2000 1300 2000 1450 2000 1400	425 450 450 590 590 560	425 450 450 560 590 560	215 200 200 265 265 265	1.6 1.6 1.7 1.7 1.7	1.5 1.5 1.6 1.6 1.6 1.5	0.79 0.79 0.85 0.85 0.79	875 1000 1400 1450 1450 1450 1250	425 315 315 560 560 470	190 175 175 230 230 230	1.5 1.5 1.7 1.7 1.7 1.5	1.4 1.4 1.6 1.6 1.4	0.74 0.74 0.85 0.85 0.74	425 825 825 975 975 925	1100 1100 1100 1550 1600 1500	0.42 0.41 0.50 0.50 0.46	0.42 0.41 0.50 0.50 0.46
24F-ECSPT CSP/CSP 2400 560 650 215 19 18 0.85 1950 470 190 17 16 0.85 1150 2000 0.42 0.42 24F-ECSPS CSP/CSP 2400 150 560 650 215 19 18 0.85 1200 470 190 17 16 0.85 1150 100 170 16 0.85 1150 100 177 16 0.85 1150 100 177 16 0.85 1150 100 0.42 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44												-				-				0.46
24F-V10 DF/HF 2400 2400 650 650 215 1.9 1.8 0.95 1450 375 200 1.6 1.5 1.4 0.74 1000 1250 0.50 0.43 24F-V/DF1 ^(h) DF/DF 2600 1950 ^(h) 650 650 265 2.1 2.0 1.06 1850 560 230 1.9 1.8 0.95 1400 1800 0.50 1.6 1.5 1.6 1.5 1.4 0.74 1000 1600 0.50 0.60 0.50 0.50 0.51 0.42	24F-E/CSP1 24F-E/CSP2 24F-E/CSP3 24F-E/CSP4 24F-E/SPF1 24F-E/SPF2 24F-E/SPF3 24F-E/SPF3 24F-E/SPF4 24F-E/ES1M1 24F-V4 24F-V4M1 ⁽⁰⁾ 24F-V5M1 24F-V5M1 24F-V5M1 24F-V5M2 ^(h) 24F-V5M3 ^(h) 24F-V8M3 ^(h)	CSP/CSP CSP/CSP CSP/CSP SPF/SPF SPF/SPF SPF/SPF ES/ES ES/ES HF/HF DF/DF DF/DF DF/DF DF/HF DF/SPF DF/HF DF/HF DF/HF DF/HF DF/HF	2400 2400 2400 2400 2400 2400 2400 2400	2400 2400 1550 2400 2400 1555 1700 1700 2400 1600 1850 1850 1850 1600 1600 1600 1600 2400 2400	560 560 560 560 560 560 560 560 560 560	560 560 650 650 560 560 560 560 560 560 560 560 560 560 560 560 560 560 650 650 650 650 650 650	215 215 215 215 215 215 215 215 215 200 215 265 220 215 215 215 215 215 215 265 265	1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.6 1.8 1.6 1.8 1.6 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.85 0.95 0.85 0.95 0.85 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9	1150 1500 1200 1400 1150 1200 1400 1100 1200 1450 1450 1450 1350 1200 1200 1550	$\begin{array}{c} 470\\ 470\\ 470\\ 470\\ 470\\ 470\\ 470\\ 470\\$	190 190 195 200 190 195 200 175 175 175 190 230 230 200 200 200 200 200 230 230	1.7 1.7 1.6 1.7 1.7 1.7 1.6 1.7 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7	$\begin{array}{c} 1.6\\ 1.6\\ 1.5\\ 1.6\\ 1.6\\ 1.5\\ 1.6\\ 1.5\\ 1.5\\ 1.5\\ 1.6\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6$	0.85 0.85 0.79 0.85 0.85 0.79 0.85 0.79 0.79 0.79 0.79 0.85 0.85 0.85 0.85 0.79 0.79 0.79 0.79 0.79 0.85	1150 1150 900 1150 1150 1150 1050 1050 975 1100 1100 1100 1150 1150 1150 1150 11	2000 2000 1750 2000 2000 1750 1900 1150 1150 1650 1650 1650 1450 1450 1450 1450 1650	$\begin{array}{c} 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.41\\ 0.41\\ 0.43\\ 0.50\\$	$\begin{array}{c} 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.41\\ 0.43\\ 0.50\\ 0.50\\ 0.50\\ 0.43\\ 0.43\\ 0.43\\ 0.43\\ 0.50\\ 0.50\\ \end{array}$
26F-E/DF1M1 ^(h) DF/DF 2600 2600 650 265 2.1 2.0 1.06 1850 560 230 1.9 1.8 0.95 1400 1800 0.50 0.50 24F-1.8E Glular Header ⁽ⁱ⁾ SP 2400 1600 500 500 215 1.9 1.8 0.95 1300 375 200 1.6 1.5 0.79 950 1200 0.42 0.42 16F-V5M1 ⁽⁰⁾ SP/SP 1600 650 650 300 1.5 1.4 0.74 1750 650 260 1.5 1.4 0.74 1000 1500 0.55 0.55 24F-V1 SP/SP 2400 740 740 300 1.9 1.8 0.95 1650 650 260 1.7 1.6 0.85 1150 1650 0.55 0.55 24F-V3 SP/SP 2400 2000 740 740 300 1.9 1.8 0.95 1750 65	24F-V10 24F-V/DF1 ^(h)	DF/HF DF/SW	2400 2400	2400 1600	650 650	650 650	215 195	1.9 1.9	1.8 1.8	0.95 0.95	1450 900 ^(k)	375 255	200 205	1.6 1.5	1.5 1.4	0.79 0.74	1150 1000	1550 1250	0.50 0.50	0.43 0.42
24F-1.8E Glulam Header(II)WS,SP/WS, SP240016005005002151.91.80.9513003752001.61.50.7995012000.420.4216F-V5M10SP/SP160016006506503001.51.40.7417506502601.51.40.74100015000.550.5524F-SP10SP/SP24007407403001.91.80.9516506502601.71.60.85115016500.550.5524F-V3SP/SP240017507406503001.81.70.9014506502601.71.60.85115016500.550.5524F-V3SP/SP240020007407403001.91.80.9517506502601.71.60.85115016500.550.5524F-V3SP/SP240020007407403001.91.80.9517506502601.71.60.85115016500.550.5524F-V3SP/SP240020007407403001.91.80.9517506502601.71.60.85115016500.550.5524F-V3SP/SP240020007407403001.91.80.951750650260 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														-						
24F-E/SP1(I)SP/SP SP/SP240024007407403001.91.80.9516506502601.71.60.85115016500.550.5524F-V1SP/SP240017507406503001.81.70.9014506502601.61.50.79110015000.550.5524F-V3SP/SP240020007407403001.91.80.9517006502601.71.60.85115016500.550.5524F-V3M1(I)SP/SP240020007407403001.91.80.9517006502601.71.60.85115016500.550.5524F-V3M2(I)SP/SP240020007407402501.91.80.9517506502601.71.60.85115016500.550.5524F-V3M2(I)SP/SP240020007407402501.91.80.9517506502601.71.60.85115016500.550.5524F-V3M2(I)SP/SP240016507406502101.81.70.9013504702301.61.50.7913500.550.5524F-V5M1SP/SP240024007407403001.91.80.951700650260 <td< td=""><td>24F-1.8E Glulam</td><td>WS,SP/WS,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.42</td></td<>	24F-1.8E Glulam	WS,SP/WS,																		0.42
24F-V1 SP/SP 2400 1750 740 650 1.5 1.6 0.50 1.6 1.5 0.50 1.60 0.55 0.55 24F-V1 SP/SP 2400 1750 740 650 300 1.8 1.7 0.90 1450 650 260 1.6 1.5 0.79 1100 1500 0.55 0.55 24F-V3 SP/SP 2400 2000 740 740 300 1.9 1.8 0.95 1750 650 260 1.7 1.6 0.85 1150 1650 0.55 0.55 24F-V3M0 ⁽⁰⁾ SP/SP 2400 2000 740 740 300 1.9 1.8 0.95 1750 650 260 1.7 1.6 0.85 1150 1650 0.55 0.55 24F-V3M0 ⁽⁰⁾ SP/SP 2400 2000 740 740 250 1.9 1.8 0.95 1750 650 260 1.7 1			1600	1600	650	650	300	1.5	1.4	0.74	1750	650	260	1.5	1.4	0.74	1000	1500	0.55	0.55
Wet-use factors 0.8 0.53 0.875 0.833 0.8 0.53 0.875 0.833 0.8 0.73 See NDS	24F-V1 24F-V3 24F-V3M1 ⁽¹⁾ 24F-V3M2 ⁽¹⁾ 24F-V4 ⁽¹⁾ 24F-V5 24F-V5 24F-V5 24F-V5M1 24F-V5M2	SP/SP SP/SP SP/SP SP/SP SP/SP SP/SP SP/SP	2400 2400 2400 2400 2400 2400 2400 2400	1750 2000 2000 1650 2400 2400 2400	740 740 740 740 740 740 740 740 740	650 740 740 740 650 740 740 740	300 300 250 210 300 300 300	1.8 1.9 1.9 1.8 1.8 1.8 1.9 1.9	1.7 1.8 1.8 1.7 1.7 1.8 1.8	0.90 0.95 0.95 0.90 0.90 0.90 0.95 0.95	1450 1700 1750 1750 1350 1700 1700 1700	650 650 650 470 650 650 650 650	260 260 260 230 265 260 260	1.6 1.7 1.7 1.6 1.6 1.6 1.6	1.5 1.6 1.6 1.5 1.5 1.5 1.5	0.79 0.85 0.85 0.79 0.79 0.79 0.79 0.79	1100 1150 1150 1150 975 1150 1150 1150	1500 1650 1650 1650 1350 1600 1600 1600	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
	Wet-use factors	1	0.8	3		0.53	0.875				0.8	0.53	0.875			1	0.8		See N	IDS

TABLE 1 (CONTINUED) – REFERENCE DESIGN VALUES FOR STRUCTURAL GLUED LAMINATED SOFTWOOD TIMBER COMBINATIONS^(A)

(MEMBERS STRESSED PRIMARILY IN BENDING) (TABULATED DESIGN VALUES ARE FOR NORMAL LOAD DURATION AND DRY SERVICE CONDITIONS.)

			Bending About X-X Axis (Loaded Perpendicular to Wide Faces of Laminations)									ling Abou el to Wide	Axiall	Axially Loaded		ners					
			Extreme Fiber in Bending ^(c)		Compression Perpendicular to Grain											Tension	Compression	Specific fo Fastener	r		
Combination Symbol	Species ^(b) Outer/Core	Bottom of Beam Stressed in tension (Positive Bending)	Top of Beam Stressed in Tension (Negative Bending)	Tension Face	Compression Face	Shear Parallel to Grain	Modi	Modulus of Elasticity ^(f)				Extreme Compression Fiber in Bending ^(g) Perpendicular to Grain		Shear Parallel to Grain	Modulus of Elasticity ^(f)			Parallel to Grain	Parallel to Grain	Top or Bottom Face	Side Face
		F _{bx} + (psi)	F _{bx} - (psi)		F _{c1x} (psi)	F _{vx} ^(d) (psi)	Ex trueEx appEx min(10 ⁶ psi)(10 ⁶ psi)(10 ⁶ psi)		F _{by} (psi)	F _{c⊥y} (psi)	F _{vy} ^(d,e) (psi)	E _{y true} (10 ⁶ psi)	Ε_{y app} (10 ⁶ psi)	E _{y min} (10 ⁶ psi)	Ft (psi)	Fc (psi)	G	i			
26F-V1 26F-V2 26F-V3 26F-V3M1 ⁽¹⁾ 26F-V3M2 ⁽¹⁾ 26F-V4 26F-V4 26F-V4M1 ⁽¹⁾ 26F-V4M2 ⁽¹⁾	SP/SP SP/SP SP/SP SP/SP SP/SP SP/SP SP/SP	2600 2600 2600 2600 2600 2600 2600 2600	2000 2100 2100 2100 2600 2600 2600 2600	740 740 740 740 740 740 740 740 740	740 740 740 740 740 740 740 740 740	300 300 300 250 300 300 250	1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.8 1.9 1.9 1.9 1.9 1.9 1.9	0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1700 1950 1950 1950 1950 1700 1700 1700	650 740 650 650 650 650 650 650	260 260 260 260 260 260 260 260	1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.85 0.95 0.95 0.95 0.95 0.95 0.95 0.95	1150 1300 1250 1250 1250 1200 1200 1200	1600 1850 1800 1800 1800 1600 1600 1600	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55		
28F-E1 28F-E1M1 28F-E2 28F-E2M1	SP/SP SP/SP SP/SP SP/SP	2800 2800 2800 2800 2800	2300 2300 2800 2800	805 805 805 805	805 805 805 805	300 300 300 300	2.2 ^(q) 2.2 2.2 ^(q) 2.2	2.1 ^(q) 2.1 2.1 ^(q) 2.1	1.11 ^(q) 1.11 1.11 ^(q) 1.11	1600 1600 2000 2000	650 650 650 650	260 260 260 260	1.8 1.8 1.8 1.8	1.7 1.7 1.7 1.7	0.90 0.90 0.90 0.90	1300 1300 1300 1300	1850 1850 1850 1850	0.55 0.55 0.55 0.55	0.55 0.55 0.55 0.55		
30F-E1 ^(m) 30F-E1M2 ⁽ⁿ⁾ 30F-E1M2 ⁽ⁿ⁾ 30F-E2 ^(m) 30F-E2M1 ^(m) 30F-E2M2 ⁽ⁿ⁾ 30F-E2M3 ⁽ⁿ⁾	SP/SP SP/SP LVL/SP SP/SP SP/SP LVL/SP LVL/SP	3000 3000 3000 ^(o) 3000 3000 3000 ^(o) 3000 ^(o)	2400 2400 3000 3000 3000 ^(o) 3000 ^(o)	$\begin{array}{c} 805\\ 805\\ 650^{(p)}\\ 805\\ 805\\ 650^{(p)}\\ 650^{(p)}\\ \end{array}$	805 805 740 805 805 650 ^(p) 650 ^(p)	300 300 300 300 300 300 300	2.2 ^(q) 2.2 2.2 ^(q) 2.2 2.2 2.2 2.2	2.1 ^(q) 2.1 2.1 2.1 ^(q) 2.1 2.1 2.1	1.11 ^(q) 1.11 1.11 1.11 ^(q) 1.11 1.11 1.11	1750 1750 1750 1750 1750 1750 1750	650 650 650 650 650 650 650 650	260 260 260 260 260 260 260	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.7 1.7 1.7 1.7 1.7 1.7 1.7	0.90 0.90 0.90 0.90 0.90 0.90 0.90	1250 1250 1250 1350 1350 1350 1350	1750 1750 1750 1750 1750 1750 1750 1750	0.55 0.55 0.50 0.55 0.55 0.55 0.50 0.50	0.55 0.55 0.50 0.55 0.55 0.50 0.50		
Wet-use factors		0.0	3		0.53	0.875		0.833		0.8	0.53	0.875		0.833		0.8	0.73	See I	NDS		

For SI: 1 psi = 6.895 Pa

(a) The combinations in this table are applicable to members consisting of 4 or more laminations and are intended primarily for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. However, design values are tabulated for loading both perpendicular and parallel to the wide faces of the laminations. For combinations and design values applicable to members loaded primarily axially or parallel to the wide faces of the laminations, see <u>Table 2</u>. For members of 2 or 3 laminations, see <u>Table 2</u>. For members of 2 or 3 laminations of use, multiply the tabulated values by the factors shown at the bottom of the table. The tabulated design values are for normal duration of loading. For other durations of loading, see applicable building code.

(b) The symbols used for species are AC = Alaska cedar, CSP = Canadian spruce-pine, DF = Douglas fir-larch, ES = Eastern spruce, HF = Hem-fir, POC = Port Orford cedar; SP = Southern pine, SPF = Spruce-pine-fir, and SW = Softwood species.

(c) The tabulated design values in bending, F_{bx}, are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, F_{bx} must be multiplied by a volume factor, C_v, determined in accordance with applicable building code. The tabulated F_{bx} values require the use of special tension laminations. If these special tension laminations are omitted, the F_{bx} values must be multiplied by 0.75 for members greater than or equal to 15 inches or by 0.85 for members less than 15 inches in depth. 20F-E/ES1 does not require special tension laminations.

(d) The design values for shear, F_{vx} and F_{vy} shall be decreased by multiplying by a factor of 0.72 for non-prismatic members, notched members, and for all members subject to impact or cyclic loading. The reduced design value shall be used for design of members at connections that transfer shear by mechanical fasteners. The reduced design value shall also be used for determination of design values for radial tension and torsion. F_{vx} and F_{vy} values do not include adjustments for checking.

(e) Design values are for timbers with laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge-bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members. This reduction shall be cumulative with the adjustment in footnote (d).

(f) See Section 2.5 of ANSI 117 (www.apawood.org) for the Etrue, Eapp, and Emin.

(g) The values of F_{by} were calculated based on members 12 inches in depth (bending about Y-Y axis). For depths other than 12 inches, the F_{by} values are permitted to be increased by multiplying by the size factor, (12/d)^{1/9}, where d is the beam depth in inches. When d is less than 3 inches, use the size adjustment factor for 3 inches.

(h) The beam depth limitation is as follows - 20F-E/ES1: 15 inches; 24F-V5M2/DF: 27 inches; 24F-V5M3/DF and 24F-V/DF1: 24 inches; 26F-E/DF1 and 26F-E/DF1M1: 9-1/2, 11-7/8, 14, and 16 inches.

(i) 20F-E/SPF1 is limited to 1-1/2 to 3-1/2 inches in width, and 7-1/2, 9, 9-1/2, 11-7/8, and 14 inches in depth. 24F-E/SP1 is limited to 9-1/2, 11-7/8, 14, 16, and 18 inches in depth.

(j) When containing wane, this combination must be used in dry conditions only. In this case, wet-use factors must not be applied. Because of the wane, this combination is available only for an industrial appearance characteristic. If wane is omitted, these restrictions must not apply. This combination is limited to 9 to 20 laminations in depth except for 16F-V5M1/SP, which contains a maximum of 1/6 wane on each side and must be 4 laminations or more in depth.

(k) For 26F-E/DF1, the F_{bx} value is permitted to be increased to 2,200 psi for beam depths less than 16 inches. For 24F-V/DF1, the F_{by} value is permitted to be increased to 1,300 psi for beam depths of at least 10-1/2 inches.

(I) This combination must be manufactured from either 24F-V4/WS, 24F-V5M1/WS, 24F-V5M2/WS, 24F-V5M3/WS, 24F-E15M1/WS, 24F-E/SPF4, or 24F-V3/SP, and is intended primarily for use in header applications.

(m) This layup combination is limited to nominal 6 inches or less in width. In addition, 30F-E1M1/SP and 30F-E2M1/SP are limited to 18 inches or less in depth.

(n) The beam depth is limited to 16 inches or less for 30F-E2M2/SP, and 30 inches or less for 30F-E1M2/SP and 30F-E2M3/SP. The tension lamination requirements for these layups must not be omitted.

(o) The tabulated design values in bending, F_{bx}, must be multiplied by a volume factor, C_v, determined in accordance with applicable building code using 1/10 as the exponent.

(p) The allowable compressive stress perpendicular to grain of the beam must be permitted to be increased to the published allowable compressive stress perpendicular to grain of the outermost laminated veneer lumber.

(q) For 28F and 30F members with more than 15 laminations, $E_{x true} = 2.1 \times 10^6$ psi, $E_{x app} = 2.0 \times 10^6$ psi, and $E_{x min} = 1.06 \times 10^6$ psi.

(r) This combination may contain lumber with wane. If lumber with wane is used, the design value for shear parallel to grain, Fvx, shall be multiplied by 0.67 if wane is allowed on both sides. If wane is limited to one side, Fvx shall be multiplied by 0.83. This reduction shall be cumulative with the adjustment in footnote (d).

CC-ES^{*} Most Widely Accepted and Trusted

TABLE 2 – REFERENCE DESIGN VALUES FOR STRUCTURAL GLUED LAMINATED SOFTWOOD TIMBER

(MEMBERS STRESSED PRIMARILY IN AXIAL TENSION OR COMPRESSION) (TABULATED DESIGN VALUES ARE FOR NORMAL LOAD DURATION AND DRY SERVICE

CONDITIONO

								CONL	ITIONS.)							
				All Loading			n ding ak Loaded Pa Faces of		'ide	Bending Abo Loaded Perp Wide Faces of	Fasteners					
Combination Symbol Species Grade		Grade				Compression Perpendicular to Grain	Tension Parallel to Grain	Compression Parallel to Grain		Bending			Shear Parallel to Grain ^(a,b)	Bending	Shear Parallel to Grain ^(c)	Specific Gravity for Fastener Design
			(2 or More Lami- nations	4 or More Lami- nations	2 or 3 Lami- nations	4 or More Lami- nations	3 Lami- nations	2 Lami- nations	F _{vy} (psi)	2 Lami- nations to 15 in. Deep ^(d)	F _{vx} (psi)	G
			E _{axial} (10 ⁶ psi)	0.95 E_{axial} (10 ⁶ psi)	E _{axial min} (10 ⁶ psi)		Ft (psi)	Fc (psi)	Fc (psi)	F _{by} (psi)	F _{by} (psi)	F _{by} (psi)	,	F ьх (psi)		
Visually Grade	d Western S	Species														
1 2	DF DF	L3 L2	1.6 1.7	1.5 1.6	0.79 0.85	560 560	950 1250	1550 1950	1250 1600	1450 1800	1250 1600	1000 1300	230 230	1250 1700	265 265	0.50 0.50
3 5 22 ^(e)	DF DF SW	L2D L1 L3	2.0 2.1	1.9 2.0 1.0	1.00 1.06 0.53	650 650 315	1450 1650 525	2300 2400 850	1900 2100 725	2100 2400 800	1850 2100 700	1550 1800 575	230 230 170	2000 2200 725	265 265 195	0.50 0.50 0.35
70	AC	L2	1.1	1.3	0.69	470	975	1450	1450	1400	1250	1000	230	1350	265	0.35
Visually Grade	d Southern	Pine														
47 48 49 50	SP SP SP SP	N2M12 N2D12 N1M16 N1D14	1.5 1.8 1.8 2.0	1.4 1.7 1.7 1.9	0.74 0.90 0.90 1.00	650 740 650 740	1200 1400 1350 1550	1900 2200 2100 2300	1150 1350 1450 1700	1750 2000 1950 2300	1550 1800 1750 2100	1300 1500 1500 1750	260 260 260 260	1400 1600 1800 2100	300 300 300 300	0.55 0.55 0.55 0.55
We	et-use factor	s		0.833		0.53	0.8	0	.73		0.8		0.875	0.8	0.875	See NDS

For SI: 1 psi = 6.895 Pa

(a) For members with 2 or 3 laminations, the shear design value for transverse loads parallel to the wide faces of the laminations, F_{vy}, shall be reduced by multiplying by a factor of 0.84 or 0.95, respectively.

(b) The shear design value for transverse loads applied parallel to the wide faces of the laminations, F_{vy} , shall be multiplied by 0.4 for members with 5, 7, or 9 laminations manufactured from multiple piece laminations (across width) that are not edge bonded. The shear design value, F_{vy} , shall be multiplied by 0.5 for all other members manufactured from multiple piece laminations with unbonded edge joints. This reduction shall be cumulative with the adjustment in footnote (a).

(c) The design values for shear, F_{vx} and F_{vy}, shall be decreased by multiplying by a factor of 0.72 for non-prismatic members, notched members, and for all members subject to impact or cyclic loading. The reduced design value shall be used for design of members at connections that transfer shear by mechanical fasteners. The reduced design value shall also be used for determination of design values for radial tension and torsion.

(d) The tabulated F_{bx} values are for members without special tension lams, the tabulated F_{bx} values must be multiplied by a factor of 0.88. If special tension lams are used, the tabulated F_{bx} values are permitted to be increased by a factor of 1.18 regardless of the member depth.

(e) When Western Cedars, Western Cedars (North), Western Woods, and Redwood (open grain) are used in combinations for Softwood Species (SW), the design value for modulus of elasticity shall be reduced by 100,000 psi. When Coast Sitka Spruce, Coast Species, Western White Pine, and Eastern White Pine are used in combinations for Softwood Species (SW) tabulated design values for shear parallel to grain, F_{vx} and F_{vy} , shall be reduced by 10 psi, before applying any other adjustments.

TABLE 3 – MANUFACTURING LOCATIONS

Manufacturer	Location
Anthony Forest Products Co.	295 Cooper Drive, El Dorado, AR 71730
Anthony Forest Products Co.	256 Edison Road, Washington, GA 30676
WFP Engineered Products, LLC	218 V Street, Vancouver, WA 98661
WFP Engineered Products, LLC	3559 Truman Road, Washougal, WA 98671
Rosboro	22833 Vaughn Road, Veneta, OR 97487
Rosboro	2509 Main Street, Springfield, OR 97477

DISCLAIMER

APA Product Report[®] is a trademark of *APA* – *The Engineered Wood Association,* Tacoma, Washington. ICC-ES Evaluation Report is a trademark of ICC Evaluation Service, LLC (ICC-ES). The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither ICC-ES, nor APA or its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. The joint ICC-ES/APA Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. Consult the local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because neither APA, nor ICC-ES, has any control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.