A Portal Frame with Hold Downs for Engineered Applications

The APA portal-frame design, as shown in Figure 1, was envisioned primarily for use as bracing in conventional light-frame construction. However, it can also be used in engineered applications, as described in this technical topic. The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid, moment-resisting frame. The extended header is integral in the function of the portal frame, thus, the effective frame width is more than just the wall segment, but includes the header length that extends beyond the wall segment. For this shear transfer mechanism, the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame.

Cyclic testing has been conducted on the APA portal-frame design (APA 2012). Recommended design values for engineered use of the portal frames are provided in Table 1. Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness.

The Table 1 values in this report were developed using the CUREE cyclic test protocol (ASTM E2126), using a flexible load head. Earlier testing was conducted using rigid load heads and the sequential phased displacement (SPD) method, as outlined in SEAOSC (1997) Standard Method of Cyclic (Reversed) Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code (IBC) drift limit and an adequate safety factor are maintained. For seismic design, APA recommends using the design coefficients and factors for light-frame (wood) walls sheathed with wood structural panels rated for shear resistance (Item 15 of Table 12.2-1 of ASCE 7-10). See APA Report T2004-59 for more details. For designs where deflection may be less of a design consideration, for example, wind loading while the portal frames are used in tandem with each other, and not used as conventional shear walls, a load factor of 2.5, based on the cyclic test results is used.

Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs, design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations, such as a concrete foundation, stem wall or slab, and using a similar embedded strap-type hold down.
Table 1. Recommended Allowable Design Values for APA Portal Frame Used on a Rigid-Base Foundation for Wind or Seismic Loading
table

<table>
<thead>
<tr>
<th>Minimum Width (in.)</th>
<th>Maximum Height (ft)</th>
<th>Allowable Design (ASD) Values per Frame Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Shear ((a,b,c,d)) (lbf)</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>625</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>1,675</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1,125</td>
</tr>
</tbody>
</table>

Foundation for Wind or Seismic Loading\((a,b,c,d)\)

(a) Design values are based on the use of Douglas-fir or Southern pine framing. For other species of framing, multiply the above shear design value by the specific gravity adjustment factor = \((1 – (0.5 – SG))\), where SG = specific gravity of the actual framing. This adjustment shall not be greater than 1.0.

(b) For construction as shown in Figure 1.

(c) Values are for a single portal-frame segment (one vertical leg and a portion of the header). For multiple portal-frame segments, the allowable shear design values are permitted to be multiplied by the number of frame segments (e.g., two = \(2x\), three = \(3x\), etc.).

(d) Interpolation of design values for heights between 8 and 10 feet, and for portal widths between 16 and 24 inches, is permitted.

(e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design.

(f) If story drift is not a design consideration, the tabulated design shear values are permitted to be multiplied by a factor of 1.15. This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote (e) above.

Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs

- Min. 3" x 11-1/4" net header
- Steel header not allowed
- 10' max height
- 12' max total wall height
- Pony wall height
- 2' to 18' rough width of opening for single or double portal
- Header to jack-stud strap per wind design
- Min 1000 lbf on both sides of opening
- Opposite side of sheathing
- Min double 2x4 framing covered with min 3/8" thick wood structural panel sheathing with 8d common or galvanized box nails at 3" o.c. in all framing (studs, blocking, and sills) typ.
- Min length of panel per table
- Min (2) 3500 lb strap-type hold-downs (embedded into concrete and nailed into framing)
- Min reinforcing of foundation, one #4 bar top and bottom of footing. Lap bars 15" min.
- Min footing size under opening is 12" x 12". A turned-down slab shall be permitted at door openings.
- Min (1) 5/8" diameter anchor bolt installed per IRC R403.1.6 – with 2" x 2" x 3/16" plate washer
- Fasten sheathing to header with 8d common or galvanized box nails at 3" grid pattern as shown
- Header to jack-stud strap per wind design. Min 1000 lbf on both sides of opening opposite side of sheathing.
- Min double 2x4 post (king and jack stud). Number of jack studs per IRC tables R502.5(1) & (2).
References

SEAOSC, 1997, Standard Method of Cyclic (Reversed) Test for Shear Resistance of Framed Walls for Buildings, Structural Engineers Association of Southern California. Whittier, CA.